인공지능 기업의 핵심 의사결정 요소 도출을 위한 Value Engine 모형화

이경전, 손동성, 인공지능 기업의 핵심 의사결정 요소 도출을 위한 Value Engine 모형화, 2020 한국경영정보학회 추계학술대회, 2020.

Abstract

Stabell & Fjeldstad(1998)의 가치배열(Value Configuration) 이론은 기업의 비즈니스 모델을 이해하고 분석하는데 유용한 세 가지 유형을 제시한다. 가치 상점(Value shop)은 고객의 특수한 문제를 해결하는 서비스를 제공하는 기업을 분석하는데 유용하고, 가치 사슬(Value chain)은 대량 생산 체제를 갖춘 기업 분석에 사용되며, 가치 네트워크(Value network)는 두 종류 이상의 고객을 매개함으로써 가치를 창출하는 기업에 적용된다. 가치 상점은 1차 산업 혁명 시기에 탄생한 소규모 상점, 가치 사슬은 2차 산업 혁명시기에 나타난 제조업, 가치 네트워크는 3차 산업 혁명 시기에 탄생한 플랫폼 기업으로 구분한다고 할 때, 본 연구에서는 4차 산업 혁명을 대표하는 인공지능 기업의 비즈니스 모델에 적절한 새로운 가치배열로서, 가치 엔진(Value engine)을 제안한다. 엔진이란 다른 에너지를 기계에너지로 변환하는 기계로, 엔진의 한 유형인 내연 기관(Combustion Engine)은 연료를 연소하여 운동에너지로 변환한다. 한편, Boisot & Canals(2004)은 지능을 가진 자연의 또는 인공 에이전트의 정보 처리 및 행동 메커니즘을, “세계로부터 자극을 입력받아, 감지 필터를 통해 데이터로 변환하고, 개념 필터를 통해 정보로 변환하며, 이를 내면의 가치 체계를 반영하여, 행동으로 의사결정하는 시스템”으로 모형화하였는데, 본 연구는 엔진 메타포에 Boisot & Canals(2004) 모델을 결합하여 AI 엔진을 모형을 제시하였다.
AI 엔진은 데이터를 연료로 활용하여, 가치를 고려한 의사결정을 통해 행동을 도출하는데, AI엔진에 기반하여 사업을 수행하는 기업을 가치 엔진으로 모델링한다. 가치 엔진 모델을 정립하기 위한 대표적인 기업 사례로 뤼이드(Riiid)를 활용하였는데, 뤼이드는 하나의 AI 엔진으로 특정 언어와 시험 영역에 관계없이 다양한 분야에 적용할 수 있다. AI 엔진을 가진 기업은 사용자가 늘어남에 따라 데이터가 축적되고 AI 엔진의 성능이 최적화되고 이에 따라 서비스, 비즈니스 모델, 제품 등의 경쟁력과 가치가 커지는 이른바 데이터 효과(Data effect)를 나타낸다. 본 연구에서는 뤼이드 뿐만 아니라, 뷰노, 비프로컴파니, 웨이모, 테슬라, OpenAI의 GPT-3, 수퍼빈, 플리토 등 여러 인공지능 기업의 비즈니스 모델을 가치 엔진에 따라 분석하였고, 분석 과정을 통해 가치 엔진의 5대 핵심 의사 결정 요소를 다음과 같이 도출하였다: 1) 데이터와 지식의 획득 전략, 2) 가치있는 목표의 설정과 확대 전략, 3) 추론 및 최적화 전략, 4) 인간-AI 협업 전략, 5) 시스템 유지 및 운영 전략.