금융 시장 예측을 위한 앙상블 접근: 스태킹과 롤링 윈도우를 중심으로

한재윤, & 이경전. (2017). 금융 시장 예측을 위한 앙상블 접근. 한국지능정보시스템학회 학술대회논문집, 54-55. (link) ABSTRACT 금융시장을 예측하는 것은 학문적, 실무적으로 큰 가치를 지니고 있지만 큰 어려움을 지니고 있다. 이를 해결하고자 최근 기계학습을 도입하였으며, 다양한 연구들이 진행되고 있다. 그러나 대부분의 연구는 단일 모델의 성능에 초점을 맞추고 있으며, 여러 모델을 결합하는 앙상블 접근법을 활요한 수는 매우 적다. 본Continue reading “금융 시장 예측을 위한 앙상블 접근: 스태킹과 롤링 윈도우를 중심으로”

앙상블 모델을 통한 인간과 인공지능 간의 최적 운용 시스템 제안: 투자회사를 중심으로

황보유정, 김진호, & 이경전. (2017). 앙상블 모델을 통한 인간과 인공지능 간의 최적 운용 시스템 제안. 한국지능정보시스템학회 학술대회논문집, 14-15. (link) ABSTRACT 빅데이터 시대가 도래하면서, 다양한 데이터에서 규칙이나 패턴을 통해 의를 찾아내는 연구가 진행되고 있다. 다양한 머신러닝 기법들과 대용량 데이터 분석에 각광받고 있는 딥러닝 기법까지 빅데이터를 기반으로 연구되고 있다. 이렇게 다양한 방ㅂ버을 통하여 예측 모델을 만들어 사용하는 연구는Continue reading “앙상블 모델을 통한 인간과 인공지능 간의 최적 운용 시스템 제안: 투자회사를 중심으로”

기계학습과 롤링 윈도우 기법을 활용한 주식시장 및 환율 예측 모델 구현

한재윤, 김진호, 황보유정, & 이경전. (2017). 기계학습과 롤링 윈도우 기법을 활용한 주식시장 및 환율 예측 모델 구현. 한국지능정보시스템학회 학술대회논문집, 69-70. (link) ABSTRACT 최근 기계학습의 기법과 성능이 발전함에 따라, 금융권에서도 기계학습을 활용하여 주식시장 및 환율 등을 예측하려는 시도가 많아지고 있다. 하지만, 단순히 경제지표를 예측하는 경우, 변동성이 크다는 특징으로 인해 낮은 성능을 보이는 문제가 발생한다. 이에 본 연구에서는 주식 시장에Continue reading “기계학습과 롤링 윈도우 기법을 활용한 주식시장 및 환율 예측 모델 구현”